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ABSTRACT
I discuss a reversible deterministic dynamics for Ising
spins. The algorithm is a variation of microcanonical
Monte Carlo techniques and is easily implemented with
simple bit manipulation., This provides fast programs
to study non—equilibrium phenomena such as heat flow.

In this talk I will consider a variation on the microcanonical
Monte Carlo algorithm that I discussed in last year'’s lattice gauge
conference at Argonne. I introduced the present model in a recent
preprint, to which you should refer for more details.

The microcanonical Monte Carlo method combines features of con-
ventional Monte Carlo simulations of the Boltzmann distribution and
molecular dynamics calculations. The algorithm involves the use of
one or more auxiliary variables, called "demons,” to transfer energy
between the various degrees of freedom of a statistical system. In
this way thercombined energy of the system and the demons is held
exactly constant. While this method can be useful for determining
couplings in Monte Carlo renormalization group studies, its main
virtue appears to be that for discrete systems, such as the Ising
model, it can be programmed to run an order of magnitude faster than
conventional Monte Carlo algorithms.

Here I wish to consider these demon variables more seriously as a
part of the system. I will have one such variable for each site of an
Ising lattice. This will then play the role of a momentum.conjugate
to the corresponding Ising spin. While still serving as temporary

storage places for the lattice energy, the momenta can no longer



transfer energy from one site to another. Instead, energy can only
flow through the lattice bonds via the Ising interaction.

In this dynamics, as in molecular dynamics, temperature is a
stochastic concept. The energies of the immobile demons fluctuate
according to the Boltzmann distribution. The temperature is defined
by inverting this distribution as observed on averages over a region
of space or time, or both.

Before proceeding to a detailed description of the microscopic
rules, let me discuss the obvious question of whether the dynamics is
ergodic. Indeed, it is easily shown not to be. The algorithm
commutes with translations of the lattice., Thus any state which is
periodic will remain so. Of éourse, conventional molecular dynamics
simulations have similar symmetries. The fraction of states with such
symmetries should become insignificant as the volume of the system
goes to infinity. It would, however, be interesting to know if the
dynamics has any more subtle symmetries which can seriously further
limit egodicity.

For simplicity I will consider the two dimensional model for
the remainder of the talk. On each site of the lattice are four
bits. The first of these is simply the Ising spin S; & {*l}.

associated with these spins is the energy

H, = ) S.8. (1)

where the sum is over all nearest neighbors. The next two bits on
each site form a two bit integer Dz,i'Dl,i (Dj,i é:{O,l})
representing the momentum conjugate to the spins. They are associated

with the kinetic energy

. ' (2)

He = 4 g (Dl’i + 2 Dy.1

The factor of 4 is inserted because flipping any spin in eq. (2) only
changes the Ising energy by a multiple of 4, and we wish to keep this
property for the kinetic term as well, The fourth bit on each site is
its space-time parity. This is used to implement a checkerboard up-

dating without violating the definition of cellular automata. At each



time step we only consider changes of spins on that half of the sites
that have a set parity bit. All parity bits are inverted for the next
time step. Because of the rather trivial nature of this fourth bit,
its value need not actually be stored.

The updating rule for this system is the microcanonical rule of
ref. (1) on all spins with set parity bits. The resulting change in
the Ising energy associated with the flip of a given spin is calcu-
lated. If this change can be absorbed by the kinetic variable on that
site, then the spin is flipped and the corresponding change in the
momentum made. 'Otherwise, the spin and its momentum retain their old
values. Note that the dynamics is exactly reversed by an extra inver-
sion of the parity bits. Hitting the red squares of our checkerboard
twice returns the lattice to its original state.

Temperatures are determined from the distribution of kinetic

energies. In particular, we expect

P(Ei) « exp(-4 B Ei)' (3

where I have defined E; = Dy 4 * 2 D, ;and B = 1/T. Thus the average
3 1
value of Ej can be easily inverted to give the temperature.

Note that this dynamics is constructed so that the total energy
H=H +H (4)

is exactly conserved. The only way the energy can flow around the
lattice is through the bonds. Although the algorithm can simulate the
equilibrium Ising model, it is not particularly good for this. 1In
particular, we will see that a state with an initially non-~uniform
energy distribution can take a long time to equilibrate if the heat
must flow long distances. On the other hand, the procedure allows
numerical experiments which cannot be done with conventional Monte
Carlo; in particular, one can study this heat flow.

In fig. (1) I show the results of a particular experiment of this
type. Here the energy distribution of the initial lattice was not
uniform; rather, the center half of the lattice was hotter than the
remainder. The figure shows the temperature distribution as a

function of distance through the lattice for varying times after the
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Fig. 1 The evolution of a thermal bump on a 120 x 120 lattice.
The points are the temperature on a given row as obtained
from an average over the given time range.
initial configuration. Note that the thermal peak gradually diffuses
away and by 4000 iterations it is beginning to dissolve into thermal
fluctvations. Thus we are studying a diffusion equation where the
computer is only doing simple bit manipulations.
In fig. (2) I show the steady-state thermal profile of a periodic
120 by 120 lattice where heat is added to row 1 (=row 121) after each
updéte and heat is simultaneously removed from row 61. 1In this
experiment the heat was flowing at an average rate Q of 0.016 units
per time step per site. Using the linear slope of 0.0055 for small
beta in figure 4, we find the thermal conductivity at high tempera-

tures behaves as

K . 3g2 (5)



0.5 T T T T 7
-n—tsc L
0.4} . .
.
.
L ] -
0.3 o .
[
o ) .
. ® ® o
0.2 | . .
® ®
Y L ]
O fF ® * S
. [
. .
O 1 I 1 1 1
0 20 40 60 80 100 120
X

Fig. 2 The steady state thermal profile of a periodic 120 x 120
lattice heated at row 1 and cooled at row 61.

where K is defined in terms of the heat flow Q by
Q = - K §7T/8x. (6)

The slope in figure 2 increases rapidly as the critical temperature of
the Ising model is approached. This indicates a sharp decrease of the
thermal conductivity; indeed, in the ordered phase of this model, the
thermal conductivity becomes extremely small, making convergence of
this dynamics quite slow.

A good dynamics for statistical treatment should give a path
through phase space which is quite sensitive to small disturbances.
For our discrete Ising system, the correlation between the spins on
two lattices gives a simple definition of a distance between two
configurations. In fig. (3) I show the evolution of this correlation
when the two lattices initially differ only in the value of a single
spin. The correlation is plotted versus the square of the time to
give a straight line at short times. This behavior is due to a region

of decorrelated spins growing with time linearly in dimension about
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Fig. 3 As a function of time squared, the correlation between
two lattices initially differing only in the value of a
single spin. The quantity C represents the expectation
of a spin on the first lattice times the corresponding
spin on the second. The average inverse temperature of

the lattices is 8 = 0.409.
the initial disturbed spin. An interesting experiment that I have not
done 1is to see if this decorrelated region assumes a circular shape as
it grows.

To conclude, I have presented a simple dynamics which is able to
simulate a heat equation via an algorithm in which all bits used by
the computer are of comparable importance. As the heat equation is a
rather generic partial differential equation, the computational advan-—

tages of this bit manipulation may have considérably wider applica-

tion“.
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